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Probability theory first reached its modern axiomatization in 1933.1 Along
with his famous axioms for unconditional probability, Kolmogorov gave a for-
mula for calculating conditional probabilities. “If P (A) > 0, then the quotient
PA(B) = P (AB)

P (A) is defined to be the conditional probability of the event B under
the condition A.”2 (Throughout this paper, I will use the more standard no-
tation P (B|A) in place of Kolmogorov’s PA(B).) However, since this equation
gives no value for conditional probabilities when the antecedent has probabil-
ity 0, several philosophers have given other axiomatizations, taking conditional
probabilities as basic and defining unconditional probabilities in terms of them.3

In his recent paper [Hájek, 2003], Alan Hájek points out that conditional prob-
ability is in fact a pre-theoretic notion, and thus can’t be taken to be a purely
technical one defined as we like. Thus, each of these proposed sets of axioms
is an analysis of the notion, and not a definition, despite Kolmogorov’s use of
the word “defined”. Hájek then goes on to argue that Kolmogorov’s analysis is
insufficient, and that we must therefore adopt something like Popper’s axioms
instead, taking conditional probability to be basic and analyzing unconditional
probability in terms of it.

However, I will argue that there is no analysis of conditional probability that
could be correct while assigning a value to every pair of events, as [Popper, 1959]
requires.4 This argument will rely on a “reflection principle”5 stating that if B
is the event that exactly one of some pairwise mutually impossible events Eα

occurs, then P (A|B) ≥ min{P (A|Eα)}. In addition, I will show that there is
a function that satisfies the standard axioms as well as this principle, and that

1[Kolmogorov, 1950], p. 2
2[Kolmogorov, 1950], p. 6
3See [Popper, 1959, Roeper and Leblanc, 1999, van Fraassen, 1995b]. [Rényi, 1970] also

gives an axiomatization taking conditional probabilities to be basic, but he does so to solve a
different problem, and his axiomatization still faces the zero divisor problem.

4“Whenever there is a probability p(b, a) - i.e. a probability of b given a - then there is
always a probability p(a, b) also.” [Popper, 1959], p. 326. [Halpern, 2004] points out that
Popper’s analysis is in fact equivalent to that of [van Fraassen, 1995b], as well as to a third
account involving infinitesimals (which Hájek dismisses), so this consequence is fairly general.

5van Fraassen argues for almost exactly this principle in his [van Fraassen, 1995]. He
doesn’t presuppose an account of rational belief that requires it to be a probability function,
but claims that if one uses a probability function and updates only by conditionalization, then
this principle is upheld. However, this is only a theorem when conditionalizing on events of
precise, positive probabilities. I believe his arguments suffice to show that it should be true
for conditionalizing on events of probability zero as well, as I require here.
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this function was discussed by Kolmogorov already in his foundational work.
Any function that could claim to represent conditional probability must almost
equal this function. However, this function will take three arguments instead
of the standard two for conditional probability. Also, [Seidenfeld et al., 2001]
points out that in at least some probability spaces, any such function must
violate certain intuitive constraints on a probability function. Thus, conditional
probability must often be taken to be defined merely relatively, not absolutely
as Hájek wants. In addition, in some cases it may not be able to be defined
at all! At any rate, whenever it exists, it must be (almost) equal to a function
given by Kolmogorov himself, allowing conditional probability to be analyzed
in terms of unconditional.

1 Hájek’s Argument

Hájek starts by proving what he calls the “Four Horn Theorem”:

Any probability assignment defined on an uncountable algebra on
an uncountable set either 1. assigns zero probability to uncount-
ably many propositions; or 2. assigns infinitesimal probability to
uncountably many propositions; or 3. assigns no probability what-
soever to uncountably many propositions; or 4. assigns vague prob-
ability to uncountably many propositions. ([Hájek, 2003], p. 284)

In any of the cases forced to exist by this theorem, Kolmogorov’s ratio analysis
leaves P (A|B) undefined. However, Hájek gives examples of each of these cases
in which there is a clear, intuitive value for what the conditional probability
should be. Thus, he concludes the ratio analysis is incorrect, because it fails to
account for the full extension of the conditional probability function.

He then goes on to note the following:

The examples of vague and undefined probabilities suggest that the
problem with the ratio analysis is not that it is a ratio analysis, as
opposed to some other function of unconditional probabilities. The
problem lies in the very attempt to analyze conditional probabil-
ities in terms of unconditional probabilities at all. It seems that
any other putative analysis that treated unconditional probability
as more basic than conditional probability would meet a similar fate
- as Kolmogorov’s elaboration (RV) did. ([Hájek, 2003], p. 315)

However, what he calls “Kolmogorov’s elaboration” is the function that I will
end up supporting. While the ratio analysis leaves out some conditional prob-
abilities that should be defined, I will argue that the accounts Hájek prefers
taking conditional probability as basic will include some conditional probabili-
ties that shouldn’t be defined. While this elaboration will still have some trouble
dealing with cases of vague or undefined probabilities, most accounts of how to
deal with such unconditional probabilities will lead to a natural generalization
of this elaboration. Thus, I contend that this elaboration is what conditional
probability must (almost) be.
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2 The Borel Paradox

I will concede all of the specific intuitions that Hájek uses in his paper. However,
I will show that any natural generalization of these intuitions will lead to an
inconsistency in one situation that he discusses.

Suppose that we have a uniform probability measure over the Earth’s
surface (imagine it to be a perfect sphere). What is the probability
that a randomly chosen point lies in the western hemisphere (W ),
given that it lies on the equator (E)? 1/2, surely. But the probability
that the point lies on the equator is 0, since the equator has no
area. . . . We could have asked a similar question for each of the
uncountably many lines of latitude, with the same answer in each
case. ([Hájek, 2003], p. 289)

Hájek attributes this scenario to Borel, and I will follow Kolmogorov in calling
this the “Borel Paradox”.6 I will use somewhat different notation from Hájek
and go into more detail than Kolmogorov. In addition, I will follow Hájek and
Kolmogorov in sometimes identifying an event with a certain set of worlds or
outcomes of an experiment, but this will be merely for notational convenience,
rather than as a claim about what events are.

Consider a sphere of surface area 1, with center O, and let X be a point
chosen uniformly at random from the surface. For any (measurable)7 region
E, P (E) is given by the area of E. If Y is any point on the sphere, and
0 ≤ θ0 ≤ θ1 ≤ π, then I will define the event SY,θ0,θ1 to occur just in case
θ0 ≤ 6 XOY ≤ θ1. For instance, if Y is the north pole, then SY,0,π/2 is the
northern hemisphere, and SY,2π/3,3π/4 is the region between 30 and 45 degrees
south latitude. By a simple integration, we can find that the area of this region
(and thus the probability of the event) is cos θ0−cos θ1

2 . I will also define CY to
be SY,π/2,π/2, so that if Y is either pole then CY is the equator, if Y is on the
equator at 90 degrees west longitude then CY is the Greenwich meridian, and
in general CY is some great circle on the surface of the earth. It is easy to verify
that P (CY ) = 0.

2.1 Two Generalizations of Hájek’s Intuition

If we let Y be the point on the equator at 90 degrees west longitude, and Z
be the north pole, then W = SY,0,π/2 is the western hemisphere and E = CZ

is the equator. Hájek suggested that intuitively, P (W |E) = 1/2, even though
the relevant ratio is undefined. There are two ways for this intuition to arise.
One way is to note that exactly half of the length of E lies within W , and to
suppose that since the unconditional distribution is uniform on the surface of
the earth, the distribution conditional on E should be uniform on the length

6[Kolmogorov, 1950] pp., 50-51
7Note that the Axiom of Choice tells us that unmeasurable sets exist, and therefore not

every unconditional probability can be defined. Thus, perhaps it shouldn’t be surprising to
learn that the same applies for conditional probabilities.
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of E. Another way is to note that the symmetry of the earth suggests that
P (W |Eα) should be equal for any great circle Eα that goes through Y . Thus,
W should be independent of each Eα (since every point other than Y and its
opposite is in exactly one Eα), and in particular it should be independent of
E. Thus, P (W |E) should equal P (W ), which is 1/2. Fortunately, these two
intuitions agree.

However, these two intuitions come apart for most pairs of angles other than
(0, π/2). Let N be the north pole and let A be SN,0,π/6, which is the collection
of all points with latitude at least 60 degrees north. Let B be the great circle
containing the Greenwich meridian. Since exactly 1/6 of the length of B lies
within the region A, the first intuition suggests that P (A|B) = 1/6. But the
symmetry argument of the second intuition applies if we consider all the lines
of longitude now, and this suggests that P (A|B) = P (A) = 2−

√
3

4 . In general,
for SY,θ0,θ1 , the first intuition gives P (A|B) = θ1−θ0

π while the second gives
P (A|B) = P (A) = cos θ0−cos θ1

2 . For any of the uncountably many possible
values of θ0, at most three of the uncountably many possibilities for θ1 will
make these two values agree. Thus, almost always, at least one of these two
intuitions will have to be wrong. It seems that Hájek just happened to be
lucky in choosing 0 and π/2 so that he didn’t have to choose between these
intuitions. More charitably, I suggest that he chose a case where the intuitions
were strongest, so it is natural that he chose one where these two arguments
agree. This separation of intuitions is what led Kolmogorov to call this scenario
the “Borel Paradox”.

2.2 Vindication of the Second Intuition

Because these intuitions seem to have led us astray, I will now argue more
carefully and show that the second intuition is basically correct and that P (A|B)
is almost certainly P (A). Let A be the region SY,θ0,θ1 , and let E be the set of
all great circles Eα that go through Y . Assume that there is some conditional
probability P (A|Eα) for each Eα ∈ E . (It will later be clear that this assumption
is not so innocent.) I will show that for almost all the Eα, P (A|Eα) = P (A).
That is, if B is the union of the Eα such that P (A|Eα) 6= P (A), then P (B) = 0.

To do this, I will define a function h on the surface of the sphere, such
that if w is any point on the surface other than the poles, I will let h(w) =
P (A|Eα) − P (A), where Eα is the unique element of E containing w. Then h
is a function that tells us how much the symmetry is violated by at any point.
If w is a pole, then I will let h(w) = 0. The desired result will be to show that
P (h(w) 6= 0) = 0. To do this, I will have to assume that we accept Kolmogorov’s
axiom of countable additivity for probability functions. This axiom has been
questioned by some probabilists, but even without it, I will be able to prove for
every positive ε that P (h(w) > ε) = 0 and P (h(w) < −ε) = 0. Under countable
additivity, this is equivalent to P (h(w) 6= 0) = 0, but even without it, this seems
like a strong enough constraint on h to justify saying that P (A|Eα) is “almost”
the same function as the constant function P (A).
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To prove this result by contradiction, I will assume that there is some positive
ε such that P (h(w) > ε) is positive. (The case where P (h(w) < −ε) is positive
is similar.) Let Bε be the event that h(w) > ε. Because of the way h is defined,
its value only depends on which great circle Eα the point w lies on. Thus, Bε is
the (disjoint) union of some collection of these circles. For each of these circles,
it is clear by definition that P (A|Eα) > P (A) + ε. I will argue that therefore
P (A|Bε) ≥ P (A)+ε. This is an instance of the “reflection principle” mentioned
above.

Assume that P (A|Bε) = P (A)+ε−δ. When we are in a state of knowledge8

that tells us that X is in Bε and nothing else, this is the probability that we
should assign to A. But now imagine we set up some experiment to tell us
which unique Eα that composes Bε the point X is in. We would then assign
probability P (A|Eα) to the occurence of A. Because each P (A|Eα) > P (A)+ ε,
we see that this would result in an increase in our credence for A of at least δ, no
matter how the experiment turned out. Thus, it seems that just performing the
experiment without observing the result will allow us to increase our credence
in A by at least δ, which is absurd. To avoid this outcome, P (A|Bε) should be
at least P (A) + ε as claimed above.

But now, since I have assumed that P (Bε) is positive (for the sake of a
contradiction that I will soon achieve), everyone will agree that P (A|Bε) =
P (A&Bε)

P (Bε)
, because the ratio analysis works fine as long as there are no proba-

bilities that are zero, vague, or undefined. Multiplying through, we see that
P (A)P (Bε) + εP (Bε) ≤ P (A&Bε), so that P (A)P (Bε) < P (A&Bε). However,
it is not hard to check that because A is rotationally symmetric around the
point Y and B is composed entirely of great circles through Y , P (A&Bε) must
equal P (A)P (Bε)9, so this is a contradiction. Therefore, for any positive ε,
P (Bε) = P (h > ε) = 0, QED.

Since h(w) measured the difference between P (A|Eα) and P (A) for the great
circle Eα containing w, this means that the conditional probability of A must
be almost equal to the unconditional probability almost everywhere. This is
exactly what the second intuition said.

The first intuition suggested that since the unconditional probability was
uniformly distributed over the surface of the sphere, the conditional probability
should be uniformly distributed along the length of the great circle. But this
presumes that area and length are related in the way that unconditional and
conditional probability should be. This presumption sounds natural at first,
but I think it is a bit too fast. If the space we were considering hadn’t had a
uniform distribution, this presumption wouldn’t have been so tempting. I think
the situation here shows that it is problematic even in the case of the uniform

8The argument in this paragraph assumes that the probability function described here is
a subjective probability function. But even if it is supposed to be an objective function, I
think the principle should still hold. If we follow Lewis’ Principal Principle, then we should let
our subjective probability functions track the objective one. But if the objective one violates
reflection, then the two principles will compete, which seems surprising.

9Intuitively, A and Bε are independent, because the boundary lines of A are perpendicular
to the boundary lines of B.
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distribution.
Although the second intuition gives a slightly odd result, it is supported by

the reflection principle I mentioned above. This reflection principle will give rise
to similar constraints on conditional probabilities in arbitrary probability spaces,
and thus this intuition generalizes where the first one doesn’t. Therefore, I
suggest that the second intuition is the better generalization of Hájek’s intuition,
even though the first seems initially slightly more natural.

3 Generalization

In the case of the Borel paradox, I argued that where A is some region with
rotational symmetry around Y , for almost all of the great circles Eα through Y ,
it must be the case that P (A|Eα) = P (A). This was effectively done by finding
a function gA (in this case the constant function whose value was always P (A))
such that for any B that is the union of some of the Eα, we must have P (A&B) =∫

B
gA(w)dw. Then letting fA(w) = P (A|Eα) for the unique Eα containing w,

I used the reflection principle to show that P (A&B) =
∫

B
fA(w)dw. Letting

h(w) = fA(w) − gA(w), I showed that h must be almost equal to the constant
zero function. Thus, if we have a function satisfying the integral equation, the
conditional probability must be almost equal to it.

The same procedure will work for arbitrary probability spaces and arbitrary
partitions E of the space into various Eα. Assuming that conditional probabili-
ties are always defined, I will let fA(w) = P (A|Eα). If B is the union of finitely
many such Eα, then clearly P (A&B) =

∑
P (A|Eα)P (Eα) =

∫
B

fA(w)dw. If B
is an arbitrary union of some of the Eα, the proof requires the reflection princi-
ple (though not countable additivity), and is done in the first appendix. Now, if
fA and gA are any functions satisfying this integral equation (so that for all B
that are unions of some Eα, we have P (A&B) =

∫
B

fA(w)dw =
∫

B
gA(w)dw),

then the function h(w) = fA(w) − gA(w) must be almost everywhere zero. (If
not, then we can just let B be some region of positive probability on which fA

and gA differ by at least ε and we get a contradiction.) Thus, if gA is a function
satisfying the integral equation for all events B of positive measure composed
of elements from some partition E , then the conditional probability of A given
events in this partition must be almost equal to the value of gA.

If we assume countable additivity, then the Radon-Nikodym theorem of real
analysis guarantees that such a function gA always exists.10 If such a function
exists, then it is what conditional probability must almost be. Since the equality
is only “almost” equality, note that if P (Eα) = 0, then P (A|Eα) may differ from
gA on the set Eα. So it seems that this function doesn’t specify the conditional
probability for antecedents of probability zero, which is exactly when we need
to use this rather than the ratio analysis. However, only a relatively small
number of the Eα can vary from the constraint, so the existence of a function
gA satisfying the integral equation will settle the values of almost all conditional

10[Kolmogorov, 1950], p. 48
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probabilities, though a few of these values may be incorrect.11

Note that this is much better than the ratio analysis, which stayed silent for
probabilities conditional on any event of probability 0, while this one gives us
an answer, albeit one that might be wrong for a few of these events.

4 Problems with the Analysis

Now that I’ve shown that this second intuition is in general right, and is also
better than the first because it generalizes to arbitrary probability spaces, I will
show some potentially unappetizing consequences of adopting it. In the end,
I think these problems will combine with the results I have shown so far to
suggest that conditional probabilities must not be taken to be basic, and in fact
must be undefined in many cases, even when all the unconditional probabilities
have well-defined values.

4.1 A Three-Place Function

Let Y1 be the north pole, let Y2 be the point on the equator at 90 degrees
west longitude, and let Y3 be the intersection of the equator and the Greenwich
meridian. Let A1 be SY1,0,π/6 ∪ SY1,5π/6,π, which is the union of the disc A
mentioned above with its mirror image in the south. That is, A1 is the set of all
points either further than 60 degrees north or further than 60 degrees south. Let
A2 be SY2,π/3,2π/3, which is the band generated by rotating A1 around the point
Y2. It is something like an extremely thick version of the Greenwich meridian.
It would be the points between 30 degrees north and 30 degrees south, if Y2

were a pole. Let B be CY3 - the great circle through Y1 and Y2, comprising the
lines of longitude 90 degrees west and 90 degrees east.

By the symmetries mentioned above around Y1, P (A1|B) is almost certainly
P (A1), which is 2−

√
3

2 . By the symmetry around Y2, we see that P (A2|B) is al-
most certainly P (A2), which is 1/2. However, if B is given, then A1 occurs iff A2

does, so P (A1|B) should equal P (A2|B). If the former were larger, then simple
rules of the probability calculus that every proposed set of axioms satisfy would
suggest that P (A1&¬A2|B) > 0, which would assign positive probability to an
impossible event. To avoid such a situation, the two conditional probabilities
must be equal. But these three suggestions are in contradiction.

One might try to avoid the potentially dire consequences of this trilemma by
noting that one or both of the P (Ai|B) could diverge from the value suggested
above, because each of these values has to occur almost everywhere, rather than
everywhere. I explore this possibility in the second appendix, but note here
only that this option seems to require some extra set-theoretic assumptions

11We may be able to do better by requiring in certain cases that the conditional probability
function be continuous. It is not hard to see that two continuous functions that differ only on
a set of measure zero must in fact be identical. However, there are cases where a continuous
function is definitely not what is wanted - it’s unclear how to generalize this constraint to
handle such a case. At any rate, though this approach may be wrong about any particular
conditional probability, it certainly gets almost all of them right.
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to pursue. In addition, the function given will be highly non-symmetric and
the construction will use the axiom of choice, preventing us from knowing any
particular one of its values. Thus, it hardly seems useful as a resolution.

Instead, I propose noticing the other assumption used in the argument much
earlier - that all the stated conditional probabilities exist. Because the first in-
tuition was discredited, and the second intuition gives two separate values here,
I suggest that there must be no particular value for this conditional probability.
Since the analyses of Popper and others require that every conditional proba-
bility exist, these analyses are wrong for the opposite reason that Kolmogorov’s
ratio analysis was. These accounts give a value where there is none, just as
Kolmogorov’s account gave no value where there was one.

However, some role for conditional probability can be saved by defining
conditional probabilities only relative to a partition of the space, rather than
absolutely. Recall that in arguing for the integral equation that gave us this
analysis, I made reference to all events B composed of elements from some
partition E . Thus, the account only tells us what to do when conditionalizing
on events that are composed of elements of some salient partition. So rather
than letting this function give the values P (A|Eα) absolutely, I will relativize the
function to the partition, so that it gives P (A|Eα, E), where Eα is some element
of the partition E . Note that this argument was only able to constrain the
probabilities conditional on members of E anyway, so we may as well make this
dependence explicit. Thus, I claim that conditional probability is a three-place
function, rather than a two-place function as we might have expected.

This move is not as bad as one might fear. Note that when B = Eα is
some member of the partition E with positive unconditional probability, the
integral equation requires that P (A&B) =

∫
B

fA(w)dw = P (A|Eα)P (Eα). But
then this just means that P (A|Eα) = P (A&Eα)

P (Eα) , so that the value is given by
the ratio analysis, and doesn’t depend on the third argument at all. Thus, we
can be forgiven for not having noticed this general dependency on the partition
considered, because it didn’t arise in the cases normally considered, where the
antecedent has positive probability.

In addition, in all the cases Hájek considers, even though P (Eα) = 0, the
value of P (A|Eα, E) is independent of the partition E from which Eα is drawn.12

He may have just been lucky, but I think that he chose these particular examples
for their maximal intuitive pull. It seems plausible that the strength of the
intuition is related to the lack of ambiguity in value on this account. Thus,
these particular conditional probabilities can be defined absolutely, even though
in general the value must be relativized to a partition of the space.

12It turns out that while partitioning the sphere using planes through a given axis supports
the second intuition mentioned above, partitioning it using parallel planes supports the first.
I argued for the former claim because the symmetry of A made it easier to calculate. A more
complicated argument will show that the other partition supports the other intuition, so both
have some justification, though neither tells the whole story. But when the region is an entire
hemisphere, it is relatively easy to see that both symmetries give the answer 1/2.
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4.2 An Argument for Relativization

Regardless of the importance of these mathematical considerations, there are in-
dependent reasons one might prefer a relativized conditional probability function
to an absolute one. Alfred Rényi made the following argument in an attempt
to support a different point, but I think it applies here:

In general, it makes sense to ask for the probability of an event A
only if the conditions under which the event A may or may not occur
are specified and the value of the probability depends essentially
on these conditions. In other words, every probability is in reality
a conditional probability. This evident fact is somewhat obscured
by the practice of omitting the explicit statement of the conditions
if it is clear under which conditions the probability of an event is
considered. ([Rényi, 1970], pp. 34-35)

I don’t think Rényi intended this argument quite as he stated it. The “condi-
tions under which the event A may or may not occur” sound like they should
include background assumptions, like the one “that the pack is complete and
well shuffled, etc.”13 But Rényi never talks about a probability space within
which the event of the pack being complete and well shuffled has a measure. In-
stead, the very probability model he uses presupposes that the pack is complete
and well-shuffled. It is true that Rényi always talks using conditional proba-
bilities, but the antecedents of these conditionals are always events within a
probability space (like whether an ace has been dealt), rather than these back-
ground assumptions that are necessary to define the probability space to begin
with. Thus, I think Rényi’s argument has shown merely that every probability
is in reality relative to a model, and not actually conditional.

Thus, what looks like a one-place unconditional probability function is ac-
tually a function with a hidden place for a probability model to appear as an
argument. Taking conditional probabilities seems to add one more place for the
antecedent of the conditional, but I claim here that it actually adds yet another
place as well, for the partition from which the antecedent is drawn.

This extra piece of relativization is just the sort one might expect. Just
as an unconditional event is always drawn from some probability model, the
antecedent of a conditional probability is always drawn from some hypothetical
experiment. If one learns Eα, then there was some set E of ways that the
experiment performed could have turned out, and I claim that these possible
outcomes will partition the space in just the way required for this relativized
conditional probability function. This is true whether the probability function
involved is objective or subjective, and whether the conditionalization is on
actual knowledge or a hypothetical advance in one’s knowledge.14

13[Rényi, 1970], p. 35
14In the well-known Monty Hall paradox, if the contestant knows that Monty will open a

random door that doesn’t contain the prize, but not the one she originally chose, then the
probability is 2/3 that the prize is behind door 1, given that the contestant originally chose
door 2 and Monty revealed door 3. But if the contestant instead knows merely that Monty
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Thus, the relativization required is not as big a problem as one might have
initially feared.

4.3 Impropriety

A more pressing concern is raised by [Seidenfeld et al., 2001]. In this paper,
another desideratum for conditional probability is considered. In addition to
the Kolmogorov axioms for unconditional probability, Seidenfeld et al point out
that for any element B ∈ E , the function should be “proper” at B, i.e. that
P (B|B, E) should be 1. They also consider P (A|B, E) when E is an arbitrary
“sub-σ-field” of the original space containing B, rather than requiring it to be
a partition.

In some spaces, like the uniform distribution on the interval [0, 1] with events
being only the countable and co-countable sets, and E consisting of all the
events, there is a function satisfying all my constraints but not the additional
one. This would clearly be a problem if every function I endorsed had this
property. However, there is a particularly natural function they describe that
does satisfy propriety, in addition to reflection and the Kolmogorov axioms, so
this space is not much of a problem.

However, in other spaces, they show that for certain values of E , any func-
tion satisfying the integral equation (and thus the reflection principle) must be
improper at some points, and in some cases must be improper almost every-
where! They claim that this is evidence that conditional probabilities should
be given not by the three-place function I suggest, but rather a finitely additive
two-place function described in [Dubins, 1975]. However, they also point out
that the function they recommend fails to satisfy the integral equation I give
above for some unusual events B.

I think this is just a stronger version of my claim from before that condi-
tional probabilities don’t exist in these cases. Before, I claimed that they don’t
exist in any absolute sense, but merely relative to a partition. Seidenfeld et al
have shown that relativized to certain partitions, any such function will have to
violate other important constraints. Thus, I suggest that in these cases, even
the relativized conditional probabilities I support won’t work.

In any probability space, the result of conditionalizing on an event of posi-
tive probability is well-defined by Kolmogorov’s elaboration (which I support),
Popper functions (which Hájek supports), and Dubins’ finitely-additive func-
tions (which Seidenfeld et al support). In addition, all three functions agree
on these assignments. Thus, arguments for deciding between these analyses of
conditional probability will have to depend on their relative successes on events
of probability zero.

will open a random door other than the one she originally chose, then the probability is 1/2
that the prize is behind door 1, given that the contestant originally chose door 2 and Monty
revealed the lack of prize behind door 3. The conditional probabilities depend on the way
the particular piece of knowledge was gathered, and the relativization mentioned here seems
reminiscent of this fact.
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For certain spaces and certain conditions, one or both of the other theories
will agree with the one that I support. Such cases will also do nothing to decide
between them. In the cases where they disagree though, we can see which prin-
ciples (if any) each theory violates. Seidenfeld et al have shown that for certain
spaces and conditions, no function can satisfy both reflection and propriety.
But as I have shown above, in cases where there are functions that satisfy both,
any such function must (almost) agree with Kolmogorov’s elaboration. Thus,
Kolmogorov’s elaboration involves less overall violation of these principles than
any alternative when considered over all spaces and conditions. Thus, it is what
conditional probability must (almost) be.

A Proof that conditional probabilities satisfy the
integral equation

Let E be some partition of a probability space into disjoint events Eα. Let
f(w) = P (A|Eα), where Eα is the unique element of the partition containing
the point w. I want to show that for any B that is the union of some collection
of Eα, P (A&B) =

∫
B

f(w)dw.
Note that the integral used here is the Lebesgue integral, which is defined

as the supremum of the sums
∑

xiP (h(w) = xi) over functions h that are 0
outside B, everywhere bounded above by f , and take on only finitely many
distinct values xi. I will abuse notation and use the integral symbol for the
sum in dealing with functions that only take finitely many values. That is, for
such a function h, I will define

∫
h(w)dw =

∑
xiP (h(w) = xi). It is clear that

if h′ is some function 0 outside B, everywhere bounded below by f , taking on
only finitely many distinct values x′i, then

∫
B

f(w)dw ≤
∫

h′(w)dw, because h′

is an upper bound for every h that is considered in calculating the value of the
integral of f .

Thus, if for every n I can find hn and h′n that are 0 outside B and such that
everywhere in B, hn ≤ f ≤ h′n and

∫
hn(w)dw ≤ P (A&B) ≤

∫
h′n(w)dw and∫

h′n(w)dw −
∫

hn(w)dw ≤ 1/n, then I will have proven the integral equation.
This is because the integral of h′n is an upper bound for the integral of f and
the integral of hn is a lower bound, and since n is arbitrary, they can be made
arbitrarily close.

So now let hn(w) and h′n(w) both be 0 for w 6∈ B and let hn(w) = max{ k
n :

k
n ≤ f(w)} and h′n(w) = hn(w) + 1/n for w ∈ B. Because f(w) was defined
in terms of which element Eα of the partition contained w, we see that f is
constant on the Eα, so hn and h′n are too. Thus, the set Bk where hn(w) = k

n

(which is also where h′n(w) = k+1
n ) is a union of some of the Eα. In particular,

it is the union of the Eα where k
n ≤ P (A|Eα) < k+1

n .
Thus, by the reflection principle, we see that k

n ≤ P (A|Bk) ≤ k+1
n . Mul-

tiplying through by P (Bk), we get k
nP (Bk) ≤ P (A&Bk) ≤ k+1

n P (Bk). Sum-
ming over all k from 0 to n (these are the only relevant values, because f was
bounded between 0 and 1), we get

∫
hn(w)dw ≤ P (A&B) ≤

∫
h′n(w)dw =

11



∫
hn(w)dw + P (B)/n. But this is just the inequality we wanted earlier, since

P (B) ≤ 1.
Thus, the argument goes through as desired.

B Exploration of an attempt to define condi-
tional probabilities in a non-relativized way

In this appendix I will show how Kolmogorov’s extended analysis of conditional
probabilities can be used to define every conditional probability in the Borel
paradox absolutely, rather than just relative to a particular axis. However, this
non-relativized conditional probability function will be highly non-unique, and
specifying any particular such function will require a well-ordering of the reals.
In addition, this proof requires controversial set-theoretic principles beyond just
the Axiom of Choice. Because of these problems, I will endorse the relativized
function of the main body of the text, rather than this absolute function, which
may not even exist for many spaces.

Recall that if we consider a particular axis, then relative to the partition
of the sphere into the great circles through this particular axis, the conditional
probability of any set given any great circle is (cos θ0 − cos θ1)/4 if it intersects
the great circle in the interval from θ0 to θ1 radians away. It isn’t necessary
that every great circle have this property for all its conditional probabilities,
just that for any axis, the set of great circles that do should together form a set
of measure 1 (by the result of the previous appendix). Since these values depend
greatly on the point from which the angles are measured, each great circle can
only give all the “correct” values for at most one axis it goes through. Thus, in
order to define these conditional probabilities absolutely, I will associate each
great circle with a single axis it goes through in such a way that the set of great
circles associated with any particular axis covers a region of measure 1 on the
surface of the sphere.

To do this, I will assume the Continuum Hypothesis (that any set of real
numbers with cardinality strictly less than that of the set of all real numbers
is in fact countable)15. There are just as many possible axes for a sphere as
there are real numbers. So using the Axiom of Choice, let us well-order them in
the shortest order-type possible, so that (by the Continuum Hypothesis), every
axis has only countably many predecessors in the ordering. Then associate each
great circle with the axis on it that comes earliest in the well-ordering. Thus,
each great circle will be associated with a unique axis it goes through, so we
can define the probability of any set conditional on this great circle to be the

15This proof will in fact go through using Martin’s Axiom, which is weaker than the Con-
tinuum Hypothesis. Both are known to be consistent with standard ZFC set theory. Using
Martin’s Axiom, every cardinal smaller than the number of real numbers behaves like ℵ0,
and in particular, the union of κ many sets of measure 0 is itself a set of measure 0 under
standard Lebesgue measure, assuming that κ < 2ℵ0 . For more information on these axioms,
see [Kunen, 1980], p. 51: “Unlike the basic axioms of ZFC, MA does not pretend to be an
‘intuitively evident’ principle, and in fact at first sight it seems strange and ill-motivated.”
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value it should have relative to this particular axis.
Since each circle is associated with the earliest axis on it in the well-ordering,

the only way a particular great circle through an axis A can be unassociated
with A is if it contains an axis that comes earlier than A in the well-ordering.
But as mentioned above, there are only countably many axes earlier than A, and
any pair of axes have exactly one great circle going through both of them, so
there are at most countably many great circles through A that aren’t associated
with A. By countable additivity, the great circles not associated with A have
measure 0, so the ones associated with axis A have measure 1. Since this is
true for any axis A, the association of great circles with axes has the property
required above, QED.

This result is highly counterintuitive. It says that although any given great
circle gives the “wrong” probabilities for almost every axis on it, we can make
sure that for any axis, almost every great circle through it gives the “right”
probabilities. I would argue that this highlights some counterintuitive aspects
of the Continuum Hypothesis when combined with the Axiom of Choice.

Using this association of circles with axes, we can define all the conditional
probabilities discussed above absolutely, rather than relatively, in a way that
preserves all the integrals needed. However, it is not clear that it is possible to
extend this definition to probabilities conditional on other sets of measure zero
(say, lines of latitude rather than longitude). It is also unclear whether these
probabilities will satisfy the appropriate integral equations relative to other
partitions of the space not considered here.

More importantly, the conditional probabilities so defined are highly non-
uniform, and depend on the well-ordering of the set of axes. Such a well-ordering
can only be given in a highly non-constructive way, using the Axiom of Choice,
and there are many more such well-orderings than there are real numbers. Each
well-ordering gives a different set of conditional probabilities, so it is particularly
hard to justify any set of these as the “correct” set of conditional probabilities
for this example. Without such a way to distinguish the correct well-ordering,
it seems like a terribly ad hoc solution to a problem that goes away if we just
allow relativization.16
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